Extensions 1→N→G→Q→1 with N=C33 and Q=Dic3

Direct product G=NxQ with N=C33 and Q=Dic3
dρLabelID
Dic3xC33108Dic3xC3^3324,155

Semidirect products G=N:Q with N=C33 and Q=Dic3
extensionφ:Q→Aut NdρLabelID
C33:1Dic3 = He3:C12φ: Dic3/C2S3 ⊆ Aut C33363C3^3:1Dic3324,13
C33:2Dic3 = C33:Dic3φ: Dic3/C2S3 ⊆ Aut C33366-C3^3:2Dic3324,22
C33:3Dic3 = C3xC32:C12φ: Dic3/C2S3 ⊆ Aut C33366C3^3:3Dic3324,92
C33:4Dic3 = C33:4C12φ: Dic3/C2S3 ⊆ Aut C33108C3^3:4Dic3324,98
C33:5Dic3 = C3xHe3:3C4φ: Dic3/C2S3 ⊆ Aut C33108C3^3:5Dic3324,99
C33:6Dic3 = He3:6Dic3φ: Dic3/C2S3 ⊆ Aut C33366C3^3:6Dic3324,104
C33:7Dic3 = C3xC33:C4φ: Dic3/C3C4 ⊆ Aut C33124C3^3:7Dic3324,162
C33:8Dic3 = C34:C4φ: Dic3/C3C4 ⊆ Aut C3336C3^3:8Dic3324,163
C33:9Dic3 = C32xC3:Dic3φ: Dic3/C6C2 ⊆ Aut C3336C3^3:9Dic3324,156
C33:10Dic3 = C3xC33:5C4φ: Dic3/C6C2 ⊆ Aut C33108C3^3:10Dic3324,157
C33:11Dic3 = C34:8C4φ: Dic3/C6C2 ⊆ Aut C33324C3^3:11Dic3324,158

Non-split extensions G=N.Q with N=C33 and Q=Dic3
extensionφ:Q→Aut NdρLabelID
C33.1Dic3 = C32:Dic9φ: Dic3/C2S3 ⊆ Aut C33108C3^3.1Dic3324,8
C33.2Dic3 = C32:2Dic9φ: Dic3/C2S3 ⊆ Aut C33366C3^3.2Dic3324,20
C33.3Dic3 = C3xC9:C12φ: Dic3/C2S3 ⊆ Aut C33366C3^3.3Dic3324,94
C33.4Dic3 = C33.Dic3φ: Dic3/C2S3 ⊆ Aut C33108C3^3.4Dic3324,100
C33.5Dic3 = C32:3Dic9φ: Dic3/C3C4 ⊆ Aut C33364C3^3.5Dic3324,112
C33.6Dic3 = C32xDic9φ: Dic3/C6C2 ⊆ Aut C33108C3^3.6Dic3324,90
C33.7Dic3 = C3xC9:Dic3φ: Dic3/C6C2 ⊆ Aut C33108C3^3.7Dic3324,96
C33.8Dic3 = C32:5Dic9φ: Dic3/C6C2 ⊆ Aut C33324C3^3.8Dic3324,103

׿
x
:
Z
F
o
wr
Q
<